Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Grenzwerte von Funktionen für x → xₒ – h-Methode

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Grenzwert Funktionen Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.0 / 24 Bewertungen
Die Autor*innen
Avatar
Giuliano Murgo
Grenzwerte von Funktionen für x → xₒ – h-Methode
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

"h-Methode? Das kenne ich doch von der Ableitung." Genau. Bei den Ableitungen werden Grenzwertprozesse untersucht. Hier betrachten wir eine Funktion und ihr Verhalten bei einer Definitionslücke. Wir erstezen den Abstand zwischen x und x0 bei der Grenzwertbetrachtung für h und schreiben den Grenzwertprozess nach h um. Mit Hilfe dieser Methode kann man den Grenzwert ermitteln. Hierbei benötigst du die binomischen Formeln in der allgemeinen Form (a+b)n. Wenn du die binomischen Formeln aufgelöst hast, kürzt sich bestensfalls das h heraus und wir bekommen einen Grenzwert. Was sagt uns das jetzt? Ist x0 eine Polstelle oder eine hebbare Definitionslücke? Finde es heraus. Viel Spaß beim Lernen!

Grenzwerte von Funktionen für x → xₒ – h-Methode Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Grenzwerte von Funktionen für x → xₒ – h-Methode kannst du es wiederholen und üben.
  • Tipps

    Welche Bedeutung hat bei der Grenzweltbetrachtung $\lim\limits_{x \to x_0}$ das $x_0$?

    Statt $x$ gegen $x_0$ gehen zu lassen, kann auch $x-x_0$ gegen 0 gehen.

    Lösung

    Die h-Methode ist eine Methode zur Bestimmung von Grenzwerten von Funktionen für $x\to x_0$ an einer Definitionslücke $x_0$. Dabei wird wie folgt vorgegangen:

    1. Bestimmung des Definitionsbereiches und der Definitionslücken
    2. Ersetzen von $x$: $x=h+x_0$
    3. Grenzweltbetrachtung von $\lim\limits_{h\to 0}$ statt $\lim\limits_{x \to x_0}$
    4. Anwenden von binomischen Formeln
    5. Kürzen von $h$ und Grenzwertberechnung

  • Tipps

    Die Definitionslücke ist dadurch erklärt, dass an dieser Stelle die Funktion nicht definiert ist.

    Statt $x$ gegen $x_0$ gehen zu lassen, kann auch $h:=x-x_0$ gegen 0 gehen.

    Es gilt $(a+b)^3=a^3+3a^2b+3ab^2+b^3$.

    Lösung

    Die Definitionslücke der Funktion $f(x)=\frac{x^3-2x+1}{x-1}$ ist die Nennernullstelle, also $x_0=1$.

    Anstatt nun $x$ gegen $x_0$ gehen zu lassen, kann auch $h=x-x_0$ gegen 0 gehen. Also ist $x=x_0+h$ und in diesem Beispiel $x=1+h$.

    Der Grenzwert kann nun wie folgt berechnet werden:

    • Anstatt den Grenzwert $\lim\limits_{x \to x_0} \frac{x^3-2x+1}{x-1}$ zu bestimmen, wird der Grenzwert $\lim\limits_{h\to 0} \frac{(h+1)^3-2(h+1)+1}{h}$ betrachtet.
    • $(h+1)^3=h^3+3h^2+3h+1$. Also gilt mit Termumformungen, Kürzen von h und Anwendung der Grenzwertsätze für Summen:
    $\begin{align*} \lim\limits_{h\to 0} \frac{(h+1)^3-2(h+1)+1}{h}&= \lim\limits_{h\to 0} \frac{h^3+3h^2+3h+1-2h-2+1}{h}\\ &=\lim\limits_{h\to 0} \frac{h^3+3h^2+h}{h}\\ &=\lim\limits_{h\to 0} \frac{h(h^2+3h+1)}{h}\\ &=\lim\limits_{h\to 0} (h^2+3h+1)=1\\ \end{align*}$

  • Tipps

    Bestimme jeweils die Definitionslücke.

    Bei der h-Methode wird der Grenzwert $x$ gegen $x_0$ ersetzt durch $h=x-x_0$ gegen 0.

    Lösung

    Die h-Methode ist ein Verfahren zur Bestimmung von Grenzwerten von Funktionen für $x \to x_0$ an einer Definitionslücke $x_0$. Hierbei wird wie folgt ersetzt: $x=x_0+h$. Somit kann der Grenzwert für $h\to 0$ betrachtet werden.

    • $\mathbf{\frac{x^4-x-2}{x+1}}$: Hier ist $x_0=-1$ und somit $x=-1+h=h-1$.
    • $\mathbf{\frac{x^3+1}{x-1}}$: Hier ist $x_0=1$ und somit $x=1+h=h+1$.
    • $\mathbf{\frac{x^4-16}{x+2}}$: Hier ist $x_0=-2$ und somit $x=-2+h=h-2$.
    • $\mathbf{\frac{x^2+2x-3}{x+3}}$: Hier ist $x_0=-3$ und somit $x=-3+h=h-3$.
  • Tipps

    Es gilt $(a+b)^3=a^3+3a^2b+3ab^2+b^3$.

    Wenn der Grenzwert existiert, so lässt sich $h$ kürzen.

    Lösung

    Die Definitionslücke von $f(x)=\frac{x^3-8}{x-2}$ ist $x_0=2$. Statt den Grenzwert von $x$ gegen 2 zu betrachten, kann auch der von $h=x-2$ gegen 0 betrachtet werden. Dies führt zu der Ersetzung von $x$ durch $x=2+h$.

    $\begin{align*} \lim\limits_{h\to 0} \frac{(2+h)^3-8}{h}&= \lim\limits_{h\to 0} \frac{8+12h+6h^2+h^3-8}{h}\\ &=\lim\limits_{h\to 0} \frac{h^3+6h^2+12h}{h} \end{align*}$

    Hier wurde die Formel $(a+b)^3=a^3+3a^2b+3ab^2+b^3$ mit $a=2$ und $b=h$ verwendet.

    $\lim\limits_{h\to 0} \frac{h^3+6h^2+12h}{h} =\lim\limits_{h\to 0} \frac{h(h^2+6h+12)}{h}$

    Nun kann $h$ gekürzt und der Grenzwert berechnet werden.

    $\lim\limits_{h\to 0} \frac{h(h^2+6h+12)}{h}=\lim\limits_{h\to 0} (h^2+6h+12)=12$.

  • Tipps

    Es gibt Grenzwertsätze zur Berechnung von Grenzwerten, welche Aussagen darüber treffen, wie Grenzwerte von Summenfunktionen, Differenzfunktionen, Produktfunktionen und Quotientenfunktionen berechnet werden können.

    Der $\epsilon$-Schlauch wird zur Erklärung eines Grenzwertes betrachtet.

    Lösung

    Der Grenzwert einer Funktion an einer Definitionslücke kann berechnet werden, indem

    • man verschiedene $x$-Werte, welche sich dem $x_0$ nähern, in die Funktionsgleichung einsetzt. Das wird als Testeinsetzung bezeichnet.
    • man den Term, dessen Grenzwert berechnet werden soll, umformt. Dies geschieht zum Beispiel durch binomische Formeln oder durch Polynomdivision. Dabei handelt es sich um eine Termumformung.
    • man die Grenzwertbetrachtung $\lim\limits_{x \to x_0}$ ersetzt durch $\lim\limits_{h \to 0}$, wobei $h=x-x_0$ ist. Das ist unter dem Stichwort h-Methode bekannt.
    Egal, welches dieser Verfahren angewendet wird: Wenn es einen Grenzwert gibt, so lässt sich dieser mit jedem dieser Verfahren bestimmen.

  • Tipps

    Bestimme zunächst die Stelle $x_0$, wo die Funktion nicht definiert ist, und ersetze $x=x_0+h$.

    Es gilt $(a+b)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4$.

    Es gilt $(2+h)^4=16+32h+24h^2+8h^3+h^4$.

    Lösung

    Zunächst wird die Definitionslücke bestimmt. Diese ist die Nennernullstelle, also $x_0=2$.

    Nun wird wie folgt ersetzt: $x=2+h$.

    In der Grenzwertberechnung $\lim\limits_{x \to 2} \frac{x^4-16}{x-2}$ wird $x \to 2$ durch $h \to 0$ ersetzt und $x$ wie oben angegeben:

    $\lim\limits_{h\to 0}\frac{(2+h)^4-16}{h}=\lim\limits_{h\to 0}\frac{16+32h+24h^2+8h^3+h^4-16}{h}$.

    Dies erhält man unter Verwendung der Formel $(2+h)^4=16+32h+24h^2+8h^3+h^4$. Der Term ohne $h$ fällt heraus und $h$ kann ausgeklammert werden:

    $\begin{align*} \lim\limits_{h\to 0}\frac{16+32h+24h^2+8h^3+h^4-16}{h}&=\lim\limits_{h\to 0}\frac{32h+24h^2+8h^3+h^4}{h}\\ &=\lim\limits_{h\to 0}\frac{h(32+24h+8h^2+h^3)}{h} \end{align*}$

    Nun wird $h$ gekürzt und somit der Grenzwert berechnet:

    $\lim\limits_{h\to 0}\frac{h(32+24h+8h^2+h^3)}{h}=\lim\limits_{h\to 0}(32+24h+8h^2+h^3)=32$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.213

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.121

Lernvideos

38.596

Übungen

33.424

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden